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On gravitation theories with limiting curvature 

Angelika Muller, Ulrich Heinz, Berndt Muller and Walter Greiner 
Institut fur Theoretische Physik, Johann Wolfgang Goethe Universitat, 6000 Frankfurt 
am Main, Germany 

Received 30 May 1977, in final form 13 October 1977 

Abstract. We discuss the solutions of the generalised gravitational field equations derived 
from the nonlinear Lagrangian for a limiting curvature theory and compare the free space 
solutions as well as the solutions for an extended star with the corresponding solutions of 
the Einstein equations. 

1. Introduction 

One of the curiosities of Einstein’s theory of gravitation is the appearance of event 
horizons and singularities. An event horizon is characterised by a wave front (null 
hypersurface) which just cannot escape to infinity. In the classical theory it is 
penetrable only in one direction and thus generates a strong limitation in the causal 
relationship between different parts of space-time. In contrast, an invariant 
singularity is a point in a space-time manifold at which the normal picture of space- 
time breaks down, caused, e.g., by an infinite Riemannian curvature in the vicinity of a 
point mass. It has been shown in a number of theorems that under very general 
conditions singularities and horizons appear in Einstein’s theory. This circumstance 
may speak against Einstein’s Lagrangian among competitive theories. On the other 
hand, in the last few years, a number of experiments have proven many of Einstein’s 
predictions to an accuracy of about 1 ‘/o. 

This failure of the classical theory to avoid singularities naturally leads to the 
question whether this is remedied in a quantised theory. Here one has to distinguish 
two steps: (1) quantisation of the matter fields TcLy coupling to the classical (external) 
gravitational field; (2) quantisation of the gravitational field itself. The second scheme 
is the more challenging one, but seems to be outside the present reach since no 
generally accepted method of quantising the gravitational field is available. However, 
it deserves thorough investigation whether or not the quantisation of matter and 
radiation fields already changes the situation. 

Recent theoretical work indicates that vacuum polarisation and particle creation 
play an important role in strong gravitation fields (Hawking 1974, 1975, DeWitt 
1975, Christensen 1976, Rumpf 1976a,b, Christensen and Fulling 1977 and Soffel el 
a1 1977). In this paper, we shall try to treat vacuum polarisation caused by a strong 
gravitational field in a phenomenological way by including nonlinear terms in the 
Lagrangian for the gravitational field. When doing so, we are guided by the result of 
Heisenberg and Euler (1936) who showed that vacuum polarisation in strong elec- 
tromagnetic fields can be effectively described by nonlinearities in the Lagrangian for 
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the electromagnetic interaction. Born and Infeld (1934) added to this the idea of a 
limiting electromagnetic field strength thus eliminating the divergences of Maxwell’s 
theory. In this spirit we shall postulate the appearance of a limiting curvature scalar 
Rot which should form an upper limit to space-time curvature. Such a theory will 
avoid from the beginning the existence of space-time singularities caused by infinite 
Riemannian curvature. The question, whether such a modification of the Lagrangian 
will do away with the appearance of event horizons in gravitational collapse as well, 
will be discussed in the last section of this paper. 

2. The model Lagrangian and the field equations 

The field equations for an arbitrary Lagrangian density 3 = &gf(R) are obtained 
through the variation of the action integral 

with respect to the metric tensor gik. The variation of J is straightforward (see e.g. 
Lanczos 1925, 1932 for relations between 6Rik and S g i k ) .  The resulting field equa- 
tions read: 

where f’, f(” etc denote derivatives with respect to R, and I and 11 denote ordinary and 
covariant derivatives with respect to the coordinates, respectively. The field equations 
are divergenceless as can be shown by explicit covariant differentiation of Hik .  
Already it can be noted that equations (2) depend on derivatives of the metric tensor 
gik up to fourth order. The consequences of this unusual feature will show up in the 
following. 

The Lagrangian is to be modelled after existing Lagrangians of other limiting field 
theories, i.e. Born-Infeld theory as discussed by Rafelski et a1 (1972), or the Lagran- 
gian of the theory of special relativity. We have chosen the following Lagrangian 
density: 

3 = f (R)cg 
(3) 

It fulfills several important conditions one would want to impose on every physically 
reasonable theory. In regions of vanishing curvature the Lagrangian goes over into 
the Lagrangian of general relativity; i.e. f ( R ) / R  + 1 for R + O .  In addition, the 
existence of an RZ term in f ( R )  ensures the possibility of finding asymptotically flat 
solutions. This can be seen by forming the trace of equations (2) and taking goo-  1, 
g ” - - 1  and R = R ( r ) :  
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For f ( R )  = R + [ R Y  one obtains the asymptotic solutions 

We see that we must have y = 2 necessarily and [ > 0 to make R vanish at large 
distances from the source. The last condition requires n < 1. It is clear from dimen- 
sional arguments that the limiting curvature Ro can be related to a 'limiting' mass 
density TO by the formula 

In the absence of experimental results this relation can be used to obtain a theoretical 
guess of the magnitude of Ro. If we set c2 TO= 1 GeV fm-3, which corresponds to six 
times the normal nuclear density, one obtains 

Ro = (60 km)-2. 

This defines a characteristic length, which is equal to the Schwarzschild radius of a star 
of about twenty solar masses. 

3. Solution of the field equations in empty space 

We use the metric g,, = diag(e""', -e"'", -r', -r2 sin' e).  Under the assumption of 
radial symmetry and time-independence the 16 equations (2)  reduce to the following 
three equations of the two independent variables v(r )  and c ( r ) :  

+--- e" re" -[ R ( 1  -$) - ( 1  -$)l-]] 

r 2 n  

c'=--(l---) n - 1  R ( ~ ( - v ' r + 2 )  R' 
RO 

Of these three equations only two are independent due to the relation Hikili = 0. 
The field equations allow only three types of solutions: ( a )  R SE 0 ;  ( b )  R = 

g(n)Ro = constant, where g(n )  depends on the parameter n in the Lagrangian and 
g(n )  = b for n = 4; ( c )  R(r)+ Ro for r + 0. The first type of solution includes the flat 
space and the Schwarzschild solution. The latter, however, is not a proper solution 
when the nature of the point source is considered explicitly (see 0 6 and appendix). 
The second type of solution does not approach flat space at infinity and thus might 
only be of cosmological interest. It contains the solution of the Einstein equations 
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with the cosmological A-term for A = $Ro in the case n = $. These types obviously can 
not correspond to solutions for an isolated star, leaving only case (c) as a possible 
solution. Therefore we shall generally assume R + Ro at the origin for the point- 
source solutions. 

In order to find solutions v(r) ,  u ( r ) ,  R ( r )  of the field equations and to be able to 
impose proper boundary conditions, we first have to study the asymptotic behaviour 
for r+w and r + O .  

3.1. Solution for large r 

At large distances an ansatz for the metric e" and e" was obtained by considering a 
small deviation from the Schwarzschild solution eus, eo', 

e" = e'* + ~ ( r )  

e-= = ~ ( r )  ( v s  = - u s )  

(7 ) 

where E ,  7 are small for large r. Inserting (7) into the field equations (6)  and keeping 
terms linear in E and 17 only, one is led to the following asymptotic expansion of the 
metric (m = KM/C~, where M is the mass of the star): 

with an arbitrary constant a and 

a* = 3(1- n) /Ro .  (10) 
Independently, from the contracted form of equations (2), and imposing the boundary 
condition that R must vanish as r + 00 one obtains 

3.2. Solution for small r 

An appropriate solution in the vicinity of r = 0 has been found via Laurent expansion 
of U' and U' around r = 0: 

a2 

U' = 1 u k r k  
-m 

If we require that 

lim R = constants Ro 
r e 0  

to ensure the reality of the Lagrangian L, we find that 

vi = 0, u k  = 0 for all i, k < -1. (14) 
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To obtain the nonzero coefficients vir Uk we solve the field equations in the vicinity of 
r = 0. With the help of the field equations (6a)-(6c) and the curvature scalar 

we obtain the relations 

and 

2(v-1+ 1 )  
( 1  - n)(v- l  +A)'  R = Ro - ArP + O(r"+') with p = 

In order that the divergent term 2/r2 in the expression for R in ( 1 5 )  can be cancelled, 
u - ~  must be integer and greater than zero. For all corresponding values greater 
than -1 are allowed. u - ~  = 1 ,  = - 1  again leads to the Schwarschild solution and is 
excluded. 

3.3 .  Global numerical solutions 

As physical constraints we impose that the metric be finite everywhere. Also it must 
have the Newtonian limit at large distances. The differential equations are of fourth 
order, hence we have to impose an additional constraint. We require that the velocity 
of light stays limited as r goes to zero. Variation of the parameter LY then leads to 
solutions which in all calculations gave 

lim R = RO 
r-0 

where Ro is the limiting curvature (equation (3)). For integration of equations 
(6a, b, c )  we used a logarithmic distribution of integration points. We employed the 
predictor-corrector method based on the Adams formula (Abramowitz and Stegun 
1964). For starting values we took the asymptotic expansion of equations (8), (9) .  
The numerical calculations proved u - ~  = Y - ~  = 2 to be the only solution satisfying the 
physically reasonable condition that the speed of light should stay finite as r 
approaches zero. So the metric coeficients are 

where ro and rb are arbitrary constants related to (TO and vo in the expansion of u(r) 
and v(r) .  

The parameters entering into our theory can be expressed in dimensions of length, 
including the limiting curvature Ro. Since there is no absolute unit of length the 
theory must be scale invariant. Indeed, all results remain invariant under the simul- 
taneous transformation 

(r ,  m, a ,  a ) + ( h r ,  Am,Aa,ha)  and R +h-2R.  (19)  
Therefore all results are shown in arbitrary units of r. Results obtained under these 
assumptions are shown in figure 1 for a variation of the parameter a,  i.e. varying 
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r 

Figure 1. The metric components e", em and the curvature scalar R ( r )  are plotted for the 
variation of the limiting curvature Ro using the parameter a = [3(1 -n) /Ro]1 '2  (full 
curves, a = 1.0; broken curves, a = 2.0). The Schwarschild solution (a  = 0) is shown for 
comparison (chain curves). Observe that no event horizon arises in the limiting curvature 
theory. n = 0.5 and m = 1.0. 

curvature limit R o .  There is no singularity left at r = 2 m  nor does there appear any 
pathological behaviour at any other distance. Both e" and e' keep the same signature as 
in the outside world of the Schwarzschild solution and go to zero for r + 0 .  This means 
that r is a time-like and r a space-like coordinate in all regions of space-time. e" 
shows a maximum moving outward as the limiting curvature Ro decreases, whereas ev 
changes only slightly under variation of R o .  

Qualitatively the same behaviour appears in the variation of the mass m and the 
exponent of the Lagrangian density n (figures 2 and 3) .  Again, e" has a flat maximum 
which is shifting outward for increasing central mass. At the same time the width of 
the curve R ( r )  grows. In figure 3, we have shown only R ( r )  for three different 
exponents n in the Lagrange function (equation (3)). For n S -1 the curvature scalar 
does not have a vanishing slope at the origin, which can be understood from formula 
(17). The exponential tail of R, however, remains unchanged. 

Further, in figure 4, we have plotted the apparent (for an asymptotic observer) 
velocity of light for various values of R o .  In accordance with the positive-definiteness 
of the metric components, we find that Ulight = c exp[i(v - g)] is finite everywhere and 
smaller than c. Thus information from all points can be propagated to infinity and no 
event horizon is formed. 

In the following we briefly discuss the consequences of the limiting curvature 
theory with respect to the three classical tests on general relativity, i.e. gravitational 
redshift, perihelion shift and the deflection of starlight passing the sun. Since all tests 
are performed in weak gravitational fields one can use the parametrised post- 
Newtonian formalism to discuss the consequences. In all three cases a detailed 
analysis (Muller A, 1977) shows that the deviations from general relativity are of the 
order of 
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Figure 2. The variations of the metric components eo, e" and the curvature scalar R are 
shown as a function of the mass m of the source of the gravitational field. 

15 t 

r 

Figure 3. The curvature scalar R ( r )  is shown for several values of the exponent n in the 
Lagrange function. The influence on the components of the metric tensor is too small to 
be depicted. 

As a should be less than 100 km, possibly even smaller, and all experiments are 
performed at r >> 10 000 km, the deviations do not contradict any present or 
forseeable precision experiment. Strong effects can only be expected close to the 
surface of small compact stellar objects, e.g. neutron stars. 
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Figure 4. This figure shows the velocity of light as seen by a distant observer. It stays finite 
everywhere, so that no event horizon occurs. 

Finally let us explore the tidal forces present in our solution (18a, b). The curva- 
ture invariant 

for the metric (18) becomes 

with the numerically defined constants ro and rb.  Here, obviously, the first term 
resulting exclusively from the radial component R0lol stays finite, while in the case of 
the Schwarzschild solution the whole expression diverges at the origin: 

(22) 
RwWPRwwp = 4 8 m  2 6  / r  . 

To understand the physical meaning of this result, we have to remind the reader of the 
role of the R , ,  as determinants of goedesic deviation: the relative acceleration 
between bodies on neighbouring geodesics is given by d2tk/dr2 = -Rokoiti ,  where 
tk(7) is the shortest distance in between and r is the proper time on the geodesic. The 
radk 1 component R0lol stays finite, i.e. there exists no infinite radial tidal pressure as 
in the Schwarzschild solution at r + O .  The diverging of the angular tidal forces is 
inherent in the model of a point mass, i.e. is forced upon the solution from the 
beginning. Whether this will happen practically, depends on whether gravitational 
collapse to a point mass still occurs in our theory. For this, however, we have to solve 
the field equations for an extended star. 

4. Solution of the field equations for a star consisting of a perfect fluid 

In order to come to a better understanding of the behaviour of the solutions for empty 
space-time, we solved the inhomogeneous equations (see equation (2) )  
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for a spherical star consisting of an incompressible fluid with density po: 

T i k  = diag(po, -- -- ( 2 4 )  c2' c2' c 

In this case, using the spherically symmetric and time-independent metric of 0 4, the 
three equations (6 )  are amended by the hydrostatic equation for the pressure p ( r ) :  

30.=--(1-g) n - 1  R -I ( 2 5 ~ )  
Ro 

<= C - ( ~ + ? ) ( p , , + 5 ) + ~ ( 1 - & ) " - ' (  2 r  8 7 r ~  - S e - " R ' ( $ - $ )  RO 

-4). R R 1  
- (1 -z) [ ; + z ( v ' -  3a') e-" + 7 ( e  

Equation (25a)  loses its sense in the limit R o + m ,  R /Ro+O,  as it contains terms 
proportional to Ro. The other equations in this limit reduce to the form which can be 
deduced from general relativity (Adler et a1 1965). 

As in § 3 we can make a (Laurent) series expansion for R ,  p ,  v' and Y' at r = 0. 
Asking for consistency with the equations ( 2 5 )  at r = 0 and demanding that R and p 
should stay finite within the star, we get R ( 0 )  = constant < Ro and e" + 1 ,  e' +constant 
as r + 0. As can be seen from equation (25d), R + Ro would result in a divergent 
pressure, since the curly bracket generally will not vanish. 

When investigating the asymptotic behaviour of the solutions at infinity, we found 
that it is not possible to maintain the Schwarzschild solution ( R  0) outside the 
matter, lest the curvature diverges to minus infinity inside the star. To give an 
argument for this behaviour, let us regard the contracted field equations ( 2 3 )  

a 
-- - a (G e-"f2' ( R ) - R ) - R f "  ( R ) + 2  f ( R ) = q T  (26)  J-g ar ar C 

at the edge ro of the mass distribution. If we assume R/Ro<< 1 outside the matter, 
then at r = ro: 

T = p o ,  f ( R ) = R ,  f" ( R ) = l ,  f2' ( R ) = f a 2 .  
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With b2 = U *  e-O(ro) equation (26) is approximately solved by: 
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where e(r) is the step function. 
This approximate solution certainly is not good for r0=2m, as we have here 

neglected terms containing the derivative of e-" and e-", which in this limit surely will 
contribute. Postulating the Schwarzschild solution for r L ro determines the integra- 
tion constant B to be B = ( 4 ~ ~ / c * ) p ~ r ~ ,  and thus 

8 T K  r0 r - ro 
R = 7 p 0  C [ 1-7 c o s h ( 6 ) ] B ( r 0 -  r)  

is strongly negative for r < ro. This means that in order to obtain reasonable solutions 
of (23) we have already to assume deviations from Schwarzschild outside the mass 
distribution. This is the point, where the empty space solutions shown in figures 1-4 
become important. 

We integrated the equations (25) by the method outlined in 5 4, starting with the 
asymptotic behaviour (8), (9), (1 1) for r + a), and determined a # 0 numerically such 
that p ( 0 )  and R(0)<Ro were finite. From equation (27) one can expect that our 
solutions should correspond to B = (4m/c2)pOr0 exp(-2ro/b) thus making R regular 

x10-2 

R 

r 

6 
1 ,  I 

r0 8 0 2 L 

IC1 

-q R 

r 

P, /- 
F 

r -2 

-6 / 
/ 

I 
I 

I 
/ -8 

/ 

U 
8 

Figure 5. The curvature scalar R ( r )  as a function of the mass of the star in the theory of 
Einstein (broken curves) and in the limiting curvature theory (full curves). Figure 5 ( c )  also 
shows the pressure p ( r )  in the two theories. ( a )  m = 0.1, ro/2m = 30; ( b )  m = 1 ,  ro/2m = 

3; (c) m = 1.6, ro/2m = 1.875; ( d )  m = 2 .2 ,  ro/2m = 1.364. 
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at r = 0. This means that R(ro)= ( 4 T K / C 2 ) p o [ l  + exp( -2ro /b ) ] ,  i.e. about half the 
value one obtains with the Einstein equation at r = ro.  Our numerical results show 
that this is indeed true for ro >> 2r:t (see figure 5a),  but that R(ro)  becomes much less 
than ( ~ T K / C * ) ~ ~  when ro gets comparable to the Schwarzschild radius. Hence equa- 
tion (27)  becomes a poor estimate as ro+ 2m. 

In figures 5 and 6 we present a series of solutions of the field equations (23)  for 
variable ratios ro/2m and a constant limiting curvature R o =  1.5 (a  = 1). The main 
feature of the curves is that the discontinuity of the curvature scalar R at r = r O  is 
smeared out in the limiting curvature theory. At the same time R,,,=max R ( r )  is 
less than the Einsteinian value ( ~ T K / c ~ ) P ~ .  In particular, while R m a x K p o  in Einstein’s 
theory, one observes a different behaviour of Rmax(Po) in the limiting curvature theory 
(figure 8 ) :  R,,, decreases again as r0+ 2m. This can be understood as the effect of the 
terms in (26)  containing the derivatives of R .  Neglecting these terms in (26),  the 
equation would be identical with the Einstein equation R = ( ~ T K / c * ) T  up to order 
( R / R o ) 2 ,  which is small in all the solutions we obtained. So all the strong deviations 

I I I I I 1 I 1 I I I 
0 2 L ro 0 10 

r 

Figure 6. The metric components e ”  and e” in the limiting curvature theory (full curves) 
and in Einstein’s theory (broken curve). e”  is nearly identical in the two theories. m = 1.6, 
ro/2m = 1.875. 

PO 

Figure 7. The pressure at the centre of the star, p ( r  = 0), as a function of the density of the 
star. In Einstein’s theory (broken curve) p ( 0 )  diverges at a density p o  = 2.947 x 
(shown by arrow), corresponding to  a radius r = g(2m); in the limiting curvature theory 
(full curve) the divergence point lies at a density which is somewhat higher. 
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from Einstein’s theory have their origin in the higher order terms in the differential 
equations, caused by the nonlinearities of the Lagrangian. These nonlinearities are 
responsible for the fact that R,,, stays much below Ro as long as Ro does not become 
very small (see figure 8(b)). This means that the deviations in this theory from general 
relativity are not so much due to the limiting curvature Ro built in, but to the higher 
order terms in the differential equations. The results will probably not be very 
different with any other nonlinear Lagrangian (see e.g. Bicknell 1974). 

m 1 la 

Figure 8. ( a )  The maximum value of the curvature, Rmnx/Ro, as a function of the mass of 
the star, compared to the Einsteinian value 8?rpo/Ro(cc = c = I), for two values for the 
limiting curvature: Ro = 0.06 (broken curves) and Ro = 1.5 (full curves). One sees that 
deviations from Einstein’s theory increase the smaller Ro becomes. ( b )  Rmax and R(ro) as 
a function of l / a  = Ro& One realises the similar behaviour of the two quantities. For 
small values of a the dependence on l / a  is nearly linear. For (a) ro = 6 =constant; for ( b )  
ro= 6 ,  m = 1.8. 

5. Consequences for gravitational collapse; event horizons in limiting curvature 
theories 

Despite some strong deviations from Einstein’s theory, one has to be aware of the fact 
that some very general features of the Einstein solutions are not destroyed in the 
limiting curvature theory. Figures 5 show the dependence of the solutions of ( 2 3 )  on 
the ratio ro/2m. As in the Einstein case, a dip shows up in R at small radii which is 
due to the pressure and increases with the density of the star. The pressure itself 
behaves very similarly to that obtained from the theory of general relativity (figures 
5 ( c )  and 7); it diverges when ro/2m decreases below a critical value. In Einstein’s 
theory this value is ro/2m = 9/8; in our theory the numerical solutions cease to exist 
for an ro/2m ratio somewhat smaller than 9/8. This can be interpreted as due to the 
inclusion of nonlinearities into the Lagrangian which soften the equation of state of 
the star, but not enough to avoid divergent pressure completely. 

The curvature in the centre of the star, R(O), becomes negative when ro/2m + 1. 
In Einstein’s theory this happens at ro/2m = 1.8; in our solutions the curvature R(0)  is 
always larger than the Einsteinian value (as a consequence of smearing out the 
discontinuity at r = io), therefore R(0)  becomes negative only for ro/2m < 1.8 (for 
Ro= 1.5, e.g. one finds a critical value r0/2m = 1.665). Thus the solutions of the 
limiting curvature theory in the limit ro/2m + 1 show a behaviour which is qualita- 
tively very similar to that of the Einstein solutions. This statement is even supported 
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by the additional fact, that (figure 9) e”(‘,) tends to zero as ro/2m + 1, i.e. that the 
gravitational redshift seems to become infinite when the star approaches its Schwarz- 
schild radius. Furthermore, R (ro) tends to zero in the same limit (figure 8(a)), i.e. the 
solutions outside the star approach the Schwarzschild limit as ro/2m + 1. All these 
facts indicate that the stationary solution breaks down again when ro+ 2m, and that 
there again appears an event horizon. Indeed, for the perfect fluid model, we could 
not find any numerical solutions of (23) for O <  ro/2m < 1 corresponding to the 
physical boundary conditions of a finite curvature and a finite pressure. Thus we are 
left with the same situation as in Einstein’s theory: when the mass (by any mechanism) 
collapses or is pressed through its Schwarzschild radius, stationary physical solutions of 
the field equations for 0 < ro/2m < 1 do not exist. 

r& m 

Figure 9. The metric component e”  at the surface of the star as a function of ro/2m. 
ro = 6 = constant, Ro = 1.5. 

This means that within the usual hydrodynamical model for the matter the gravi- 
tational collapse cannot be avoided. However, as in this theory the radial coordinate 
does not become time-like for r < 2m (in contrast to Einstein’s theory), if one assumes 
the solutions of figures 1-4 to be the solutions for r > ro, there does nof occur an event 
horizon when the star collapses through its Schwarzschild radius. In Einstein’s theory 
any distribution of matter with ro<2m is inevitably forced to collapse to a point, 
because the r-coordinate is time-like. In our theory this is not the case, and at first 
sight one might hope to be able to construct another equation of state which can 
prevent the collapse of the star to a point singularity. It seems that an equation of 
state allowing for an anisotropic pressure can avoid the pathological behaviour of the 
solutions in the limit r0+2m. For a further discussion of this question see the next 
section and Heinz et a1 (1978), where we shall carefully investigate the structure of the 
source T:. 

6 .  Conclusions 

The main results of the investigations presented in this paper may be summarised as 
follows: One cannot learn very much from the empty space solutions of the general- 
ised field equations alone; in addition to the well known solutions for euclidean 
space-time (e” =e“ = 1) and for the boundary conditions for a point mass (Schwarz- 
schild solution, e” = e-” - - 1 -(2m/r), see comment in the appendix) one finds one 
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solution corresponding to a globally constant curvature R =8Ro (for the theory with 
= + 1/2), which might possibly be of interest as a cosmological solution for a 

constantly curved universe (to be compared with the solution of the Einstein equa- 
tions for empty space including a cosmological term A = $Ro) and a discrete spectrum 
of solutions with Schwarzschild limit at infinity characterised by the fact that at the 
origin R tends to the limiting curvature Ro and the metric components e”, eLI vanish at 
r = 0 .  The physical significance of the last type of solution only becomes clear in 
context with the solutions for an extended liquid drop, and it is not easy to find 
reasonable physical arguments to select one solution from this discrete spectrum. In 
order to make the empty space solution unique, we imposed the condition that the 
velocity of light c = exp [$(v -a)] should stay finite and greater than zero everywhere 
in space-time. 

Investigations of the solutions for an extended liquid drop show that the most 
important modifications of Einstein’s solution are not due to the fact that we intro- 
duced a limiting curvature into the theory, but are caused by the higher order terms in 
the differential equations coming from the nonlinearities in the Lagrangian. Because 
of these higher order terms the discontinuity of the curvature scalar at the edge of the 
mass distribution is smeared out, and we no longer have the Schwarzschild solution 
(R(r )  = 0 for r # 0) outside the matter, but an exponentially decreasing curvature 
corresponding to the last type of empty space solutions discussed above. The width of 
this smearing-out effect is given by the limiting curvature; it is proportional to 
U = [3(1 - n / R $ * / ’ .  This means that in a range of the order of [3(1- n ) / R i ] ’ / 2  above 
the mass distribution deviations from the l / r ’  behaviour of the gravitational force 
should occur. As the l / r 2  law for gravitation has been verified very exactly for large 
distances, but not so clearly at laboratory dimensions (Long 1974), a = 
[3(1- n ) / R o ]  should not be greater than a few centimetres. This means that the 
limiting curvature must be larger than about 1 cm-’, which corresponds to the value 
caused by a matter density of po - lo2’ g cm-3 in Einstein’s theory. 

The most important result, however, is that within the perfect fluid model the 
limiting curvature theory cannot avoid the collapse to a point singularity, although we 
tried to get rid of this behaviour from the beginning by introducing a limiting 
curvature and thus forbidding the occurrence of infinite curvatures. In this limiting 
curvature theory, too, the stationary solutions cease to exist, when the radius of the 
star approaches its Schwarzschild radius. The gravitational pressure becomes infinite 
and cannot be balanced by the inner pressure of the liquid drop, and the star thus is 
forced to collapse to one of the point-source solutions discussed in § 3. 

This result naturally leads to the question why there is no continuous transition 
possible from the solutions for an extended liquid drop to the point-source solutions 
of figures 1-4. The reason for this impossibility is the same in Einstein’s theory (Heinz 
et a1 1978): inserting the Schwarzschild solution back into the Einstein equations gives 

2 1 / 2  

Tk = (M/4.1rr2) diag ( S ( r ) ,  S ( r ) ,  $rS’(r),  i rS ’ ( r ) )  (29) 
where M is the mass of the star. This shows that for the point source corresponding to 
the Schwarzschild solution (which can be shown (Heinz el a1 1978) to be the only 
possible point source with vanishing four-divergence in Einstein’s theory) the T: and 
T: components are equal to each other, and the three spatial components differ from 
each other, i.e. the pressure of the source is anisotropic. In other words, the Schwarz- 
schild point source cannot be obtained as the limit of a series of static perfect-fluid 
models. 
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Similarly one obtains for the solutions for the limiting curvature theory shown in 
figure 1 (with n = 1/2) (see appendix): 

where c(0) is the velocity of light at r = O ,  p = ~ + V - I - U - I ,  v-1 and u - ~  are the 
coefficients of the leading terms in v f ( r )  and u‘(r) near r = 0 (see equation (16)) and A 
is defined by the asymptotic expansion for R (cf. equation (17)) 

R(r)= Ro-ArP (r  small). (31) 

We did not write down here the tensor T‘, but the tensor density TP exp [4(v + U)], as 
the only quantity of physical interest is 

V + U  [ T k v 5 d 4 x  = [ Tik e x p ( l )  dt  d3r. 

For the simplest case V - I =  U-1 = 2 (corresponding to a finite velocity of light every- 
where) equation (30) leads to 

7 diag( 1,  - I ,  1, 1). 

The numerical calculations show that the factor (2RO/Rf1(0))1’2 is exactly proportional 
to the mass of the star (see figure 10). Thus the point source for the limiting curvature 
theory again has nothing to do with the hydrodynamical model for the perfect fluid, 
and the impossibility of a continuous transition from the solutions for an extended 
liquid drop to the point-source solutions becomes obvious. An investigation of 
generalised models for the matter tensor which allow for the limit (32) is in progress. 

0 0.5 1 .o 
m 

Figure 10. (~RO/R”(O) ) ’ ’~  as a function of m for the point-source solutions of 5 3, 
showing strict proportionality. 
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Note added in proof. In order to investigate the stability of stars against gravitational 
collapse in limiting curvature theories, we have looked for stable orbits of test 
particles in the metric shown in figure 1. These are given by the minima of the 
effective potential Vf, = exp(v(r))(mE + 12/r2) where mp is the mass of the test parti- 
cle and I its angular momentum. The resulting radii of stable orbits are connected 
with 1 by l2 = r2[2/(2- v'r)-  11. For the Schwarschild metric the smallest stable orbit 
has the radius rmin=6m (where m is the central mass), which is the reason for 
instability against collapse in Einstein's theory when the star radius approaches the 
critical value ro-6m (Oppenheimer and Volkoff 1939). For the limiting curvature 
theory rmin turns out to be larger than 6m, approaching infinity as the limiting 
curvature Ro goes to zero. Thus in our theory stars will become unstable against 
gravitational collapse earlier than in general relativity. We conclude that the intro- 
duction of a limiting curvature scalar does not help to avoid the final collapse of a 
heavy star into a point singularity. 

Appendix 

We can write the equation for TE as 

where f'"'(R) is the nth derivative of f with respect to R and the prime denotes 
differentiation with respect to r. (Al) can be transformed to 

642) 
+ i e ( v + U ) / 2 f  -4R e (V+L7) /2  1) f .  

Inserting the expansions (12a), (12b), (17), we get in lowest order (higher order terms 
don't give 6-function contributions): 

Using the identities (for u - ~  B 2) 
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and 

(as can be verified by integrating with a test function), we get 
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(A5) 

From (16) one can show that the last term vanishes identically. The second term is 
(integration with a test function!) 

Thus one has with (A4) 

8 T K  0 (u+u) /2  F T o e  

The other components of T: may be developed similarly. One obtains from equation 
(23) 

8 l r K  1 ( u + u ) / 2   TI e 

f, 649) $ R  e(v+U)/Z f' - 

8 T K  2 ( u + u ) / 2  - 7 T 2  e 

-- 8 T K  3 ( " + 0 ) / 2  - 2 T 3 e  
C 

e('+u)/2f ( l )  ar ar r r ar 

+if e('+u)'2. (A101 

Inserting again the expansions (12a), (12b), (17) one realises that there occur only 
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terms of the same structure as already discussed above. Defining 

In conclusion we mention that inserting the Schwarzschild solution e” =e-- = 
1 -2m/r  into the field equations leads to a Tik tensor which is composed not only of S 
functions, but also of derivatives and powers of S functions. This does not seem to be 
a sensible choice for the source of a gravitational field. Therefore the Schwarschild 
solution cannot be regarded as a true solution of the field equations for the limiting 
curuature theory. 
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